Wald test statistic and p-value
wald_test.Rd
Given the parameter estimates and their variance-covariance matrix,
wald_test
calculates the Wald test statistic and p-value for
a set of linear constraints on the parameters.
Arguments
- gamma_hat
L x 1 vector of parameter estimates
- var_gamma_hat
L x L variance-covariance matrix of parameter estimates
- R
Q x L matrix of linear constraints to be tested. Defaults to identity matrix of size L
- c
Q x 1 vector of test values for the linear constraints. Defaults to a vector of zeros of length Q to test that all the contrasts are equal to zero.
Value
A list with the following elements:
W: Wald test statistic
p_value: p-value for the Wald test (\(\chi^2_Q\) distribution)
Examples
# test that union workers earn the same as non-union workers
cps$union <- as.numeric(cps$unionstatus == "Union")
model <- lm(earnwk ~ union, data = cps)
gamma_hat <- coef(model)
var_gamma_hat <- vcov(model)
wald_test(gamma_hat, var_gamma_hat, R = c(0, 1))
#> $W
#> [1] 28.14252
#>
#> $p_value
#> [1] 1.127022e-07
#>
# test that non-union workers make 900/week
# *and* union workers make 1000/week
wald_test(
gamma_hat,
var_gamma_hat,
R = matrix(c(0, 1, 1, 1), nrow = 2),
c = c(900, 1000)
)
#> $W
#> [1] 3273.083
#>
#> $p_value
#> [1] 0
#>